Approximation Algorithms for Geometric Networks
نویسنده
چکیده
The main contribution of this thesis is approximation algorithms for several computational geometry problems. The underlying structure for most of the problems studied is a geometric network. A geometric network is, in its abstract form, a set of vertices, pairwise connected with an edge, such that the weight of this connecting edge is the Euclidean distance between the pair of points connected. Such a network may be used to represent a multitude of real-life structures, such as, for example, a set of cities connected with roads. Considering the case that a specific network is given, we study three separate problems. In the first problem we consider the case of interconnected ‘islands’ of well-connected networks, in which shortest paths are computed. In the second problem the input network is a triangulation. We efficiently simplify this triangulation using edge contractions. Finally, we consider individual movement trajectories representing, for example, wild animals where we compute leadership individuals. Next, we consider the case that only a set of vertices is given, and the aim is to actually construct a network. We consider two such problems. In the first one we compute a partition of the vertices into several subsets where, considering the minimum spanning tree (MST) for each subset, we aim to minimize the largest MST. The other problem is to construct a t-spanner of low weight fast and simple. We do this by first extending the so-called gap theorem. In addition to the above geometric network problems we also study a problem where we aim to place a set of different sized rectangles, such that the area of their corresponding bounding box is minimized, and such that a grid may be placed over the rectangles. The grid should not intersect any rectangle, and each cell of the grid should contain at most one rectangle. All studied problems are such that they do not easily allow computation of optimal solutions in a feasible time. Instead we consider approximation algorithms, where near-optimal solutions are produced in polynomial time.
منابع مشابه
Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملOn the bounds in Poisson approximation for independent geometric distributed random variables
The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method. Some results related to random sums of independent geometric distributed random variables are also investigated.
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملDIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES
The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...
متن کاملApproximation algorithms for distributed systems
Distributed Approximation is a new and rapidly developing discipline that lies at the crossroads of various well-established areas of Computer Science Distributed Computing, Approximation Algorithms, Graph Theory and often, Computational Geometry. This thesis focuses on the design and analysis of distributed algorithms to solve optimization problems that usually arise in large-scale, heavily dy...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007